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Abstract

With increasing accessibility to Geographical Information Systems (GIS) software, researchers 

and administrators in public health routinely encounter areal data compiled as aggregates over 

areal regions, such as counts or rates across counties in a state. Spatial models for areal data 

attempt to deliver smoothed maps by accounting for high variability in certain regions. 

Subsequently, inferential interest is focused upon formally identifying the “diffrence edges” or 

“ difference boundaries” on the map, which delineate adjacent regions with vastly disparate 

outcomes, perhaps caused by latent risk factors. We propose nonparametric Bayesian models for 

areal data that can formally identify boundaries between disparate neighbors. After elucidating 

these models and their estimation methods, we conduct simulation experiments to assess their 

effectiveness and subsequently analyze Pneumonia and Influenza hospitalization maps from the 

SEER-Medicare program in Minnesota, where we detect and report highly disparate neighboring 

counties.
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1. Introduction

With increasing accessibility to Geographical Information Systems (GIS), researchers and 

administrators in public health are increasingly encountering areal datasets that are 

aggregated as case counts or rates over areal units or regions (e.g. counties, census-tracts or 

ZIP codes). This is common practice in public health for protecting patient privacy.

Statistical models for areal data can adjust for known causes of variability in the data and 

also for sparsely sampled regions by smoothing across and borrowing information from its 

spatial neighbors (see, e.g., Anselin, 1988; Le Sage and Pace, 2009; Banerjee et al., 2004). 

An especially pertinent issue is to ascertain statistically significant differences among 
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neighboring regions, hence identifying spatial barriers or difference boundaries that 

delineate them. Ultimately, the underlying influences responsible for these boundaries or 

barriers are typically of scientific and administrative interest. This ‘boundary’ detection 

problem is often referred to as “wombling”, after a foundational article by Womble (1951). 

While statistical boundary analysis has been applied extensively to point-referenced and 

gridded (or lattice) data (see, e.g., Banerjee and Gelfand, 2006), formal statistical inference 

in areal contexts present unique challenges that we outline later.

Deterministic areal wombling is often carried out using algorithms (Jacquez and Greiling, 

2003a, 2003b) that are fast and straightforward to implement but fail to account for sources 

of uncertainty, such as extremeness in counts and rates corresponding in thinly populated 

regions. Li, Banerjee and McBean (2011) proposed statistical learning for boundaries using 

the Bayesian Information Criterion. In hierarchical model based approaches, Lu and Carlin 

(2004), Lu et al. (2007) and Ma, Carlin and Banerjee (2009) investigated estimating the 

adjacency matrix within a hierarchical framework using priors on the edges. However, 

inference from these models are usually highly sensitive to prior specifications on certain 

parameters.

Our primary contribution is a method to deliver inference for areally aggregated health 

outcome data, including assessment of difference boundaries, using classes of more flexible 

and robust nonparametric Bayesian hierarchical models. Section 2 offers a brief exposition 

to models for areally referenced count data. Section 3 elucidates the key issues in areal 

boundary analysis and our Bayesian nonparametric modeling approaches. Sections 4 and 5 

discuss, respectively, a simulation study and the analysis of a Minnesota Pneumonia & 

Influenza (P & I) dataset to detect spatial health barriers between neighboring counties in 

Minnesota. Finally, Section 6 concludes the article with an eye towards future work.

2. Hierarchical Models for Areal Data

Areal data can be analyzed using Bayesian hierarchical models that incorporate geographical 

effects. For example, let Yi (random) be the observed number of patients who underwent a 

specific preventive or clinical outcome in areal unit i, i = 1, … , n, and let Ei (fixed) be the 

expected number of outcomes for that unit. A commonly used likelihood is

Y i ∼ind Poisson(Eie
μi), i = 1, …, n,

(2.1)

where μi = xi′β + ϕi represents the log-relative risk, estimates of which are often based on the 

departures of observed from expected counts, xi includes explanatory, region-level covariates 

or predictors for region i and β are the corresponding regression coefficients.
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Each φi represents the spatial random effect associated with region i, which is often modeled 

using Markov random fields (e.g. Cressie, 1993; Banerjee et al., 2004, Ch.3) that imply the 

following joint distribution for φ = (φ1, φ2, … , φn)′:

ϕ ∼ Nn 0, σ2(D − ρW)−1 ,

(2.2)

where Nn denotes the n-dimensional normal distribution, D is a n×n diagonal matrix with 

diagonal elements mi equal to the number of neighbors of area i, and W = {wij} is the 

adjacency matrix for the map, i.e., wii = 0, and wij = 1 if i is adjacent to j and 0 otherwise. In 

the joint distribution (2.2), σ2 is the spatial dispersion parameter, and ρ is a spatial 

autocorrelation parameter. We denote this distribution concisely as CAR(ρ, σ2). A sufficient 

condition for D – ρW to be positive definite is that ρ ∈ (1/λ(1), 1), where λ(1) is the 

minimum eigenvalue of W (Banerjee et al., 2004).

The CAR model has been especially popular in Bayesian inference as its conditional 

specification is convenient for Gibbs sampling and MCMC schemes. The distribution in 

(2.2) reduces to the well-known intrinsic conditionally autoregressive (ICAR) prior if ρ = 1, 

or an independence model if ρ = 0. The ICAR model induces “local” smoothing by 

borrowing strength from the neighbors, while the independence model assumes 

independence of spatial rates and induces “global” smoothing. The smoothing parameter ρ 
in the CAR prior (2.2) controls the strength of spatial dependence among regions, though it 

is well-appreciated that a fairly large ρ may be required to deliver significant spatial 

correlation.

3. Bayesian Nonparametric Models for Areal Data

3.1. Modelling considerations for areal boundary analysis

Areal boundary analysis can be approached from different perspectives. For example, Li et 

al. (2011) treat the problem as one of statistical learning for the edges, where each model 

represents a different boundary hypothesis. Emphasizing speed of execution and ease of use, 

they consider a leave-one-edge-out mechanism, where each model has exactly one 

geographical boundary omitted from the adjacency matrix. This fails to account for the joint 

effects of the edges and what impact deleting one may have on the other.

More generally, one can consider models varying in their specification of the neighborhood 

matrix W that controls spatial smoothing. However, now we encounter an explosion in the 

number of models. To be precise, if W is the original geographical map, we have 21′W1/2 

models to compare, where 1′ = (1, 1, … , 1). This will require sophisticated MCMC model 

composition or MC3 algorithms or other types of stochastic variable selection algorithms for 

selecting models (see, e.g., Hoeting et al., 1999). These methods become computationally 

intensive and unconducive to learning about edge effects in relatively large maps. Moreover, 

they work well in selection of regressors; here we are interested in choosing spatial precision 
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matrices. Li et al. (2012) reformulate this problem as one of Bayesian hypothesis testing 

within a class of spatial moving average models and adjust multiple tests using false 

discovery rates. The method, though still computationally intensive is competitive, and will 

form a benchmark for our current work in the simulation studies.

A different approach seeks to estimate the adjacency matrix within a hierarchical framework 

using priors on the adjacency relationships. These involve incorporating “edge effects”, i.e. 

random effects corresponding to the edges, in addition to regional effects. These edge effects 

would be modelled by another CAR model, or some other MRF, leading to rather complex 

site-edge models (Ma et al., 2010). However, these models often involve weakly identifiable 

parameters that are difficult to tune causing the MCMC algorithms to be substantially slower 

in converging to the desired posterior distributions.

Instead of incorporating random “edge effects”, we explore an alternative stochastic 

mechanism that allows us detect difference boundaries by considering probabilities such as 

P(φi = φj ∣ i ~ j). Clearly, continuous priors for the φi’s will not work as they will render P(φi 

= φj ∣ i ~ j) = 0. A nonparametric Bayesian framework that models the spatial effects as 

almost surely discrete realizations of some distribution comes to mind – the Dirichlet 

process (Ferguson, 1973) presents itself as a natural choice, but how do we accommodate 

spatial (areal) dependence? We addresses this issue in the subsequent sections.

3.2. Dirichlet process mixture (DPM) models for clustered data

In the context of (2.1) and (2.2), a Dirichlet process mixture (DPM) prior specifies φi ~ G, 

where G ~ DP(α, G0) is some unknown distribution modeled as a Dirichlet process (DP) 

with baseline measure G0 (e.g., Ferguson, 1973). Blackwell and MacQueen (1973) related 

the Dirichlet process to a generalized Polya urn scheme that leads to effective sampling 

strategies if given an explicit and simple prediction rule.

The stick-breaking representation of the DP (Sethuraman, 1994) says that a draw from the 

Dirichlet process can be written as G( ⋅ ) = ∑i = 1
∞ piδθi

( ⋅ ) a.s., where δθi is the Dirac measure 

(point mass) located at θi, each θi is a random draw from the base distribution G0, and 

pi = V i∏l = 1
i − 1 (1 − V l) with p1 = V1, where each V i ∼iid Beta(1, α). The pi’s are called the 

“stick-breaking” weights (their infinite sum equals 1) and the θi’s are called atoms. In 

practice, the infinite sum is often replaced by the sum of the first N(N ⩽ n) terms, since the 

probability mass in each term decays rapidly. We can simply let VN = 1 to truncate the sum 

to finite terms (Ishwaran and Zarepour, 2000). Many authors simply choose N to be a 

number large enough that there exists some empty components during the MCMC run or by 

examining the size of the last weight pN under the prior. Following Reich and Fuentes 

(2007), we choose N according to the latter (see Section 4). For concerns regarding 

truncation bias, exact sampling can be executed using slice-sampling (Kalli, Griffin, and 

Walker, 2011).

The stick-breaking representation is an extremely rich framework that subsumes DP’s and 

other extensions (e.g. MacEachern, 2001) such as Dependent Dirichlet processes (DDP)’s. 

In fact, for every conceivable joint distribution on the stick-breaking weights and the atoms, 
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there is associated a stick-breaking stochastic process. Introducing dependence is now 

natural. For example, the DDP introduces dependence through the stick-breaking weights 

and the atoms. De Iorio et al (2004) used the dependent Dirichlet process to define the 

desired dependence across the related random distributions in any ANOVA-type models. 

Gelfand Kottas and MacEachern (2005) used DDP on geostatistical data and introduced 

spatial dependence through an underlying base measure, where G ∼ DP(α, G0
(n)) and G0

(n) is a 

Gaussian process with a given covariance structure. Alternatively, Griffin and Steel (2006) 

proposed an order-based DDP which include dependence on predictors by permutation of 

elements in stick-breaking priors. Variants include kernel stick-breaking processes by 

Dunson and Park (2008) and the probit stick-breaking process by Chung and Dunson 

(2009). Spatial Dirichlet process (SDP) mixture models (Gelfand, Kottas and MacEachern, 

2005) are defined on a space of surfaces that yields almost surely discrete realizations with 

countable support. Duan, Guindani and Gelfand (2007) extended the SDP by allowing 

different surface selection at different sites. Reich and Fuentes (2007) develop a spatial 

stick-breaking prior (SSB) to analyze hurricane surface wind fields.

The aforementioned work do not, however, apply to areal data. Our need to move into DP’s 

(and their extensions) is even more fundamental – accommodating non-zero probability 

masses for spatial random effects without sacrificing richness for areal models is 

problematic in any other way. The local Dirichlet process (Chung and Dunson, 2011) offers 

an approach to the localized spatial “sharing” of atoms and weights that could conceivably 

be extended to the areal setting through a suitable definition of what a neighborhood is at 

each areal location; also see Theorem 4 in Dunson, Pillai and Park (2007) for a related idea. 

The models we propose below correspond to a subclass of stick-breaking process priors that 

includes the DP and the SDP as special cases. In particular, we construct an areally-

referenced stick-breaking process (ARSB) and an areally-referenced Dirichlet Process 

(ARDP) that will serve well for areal data allowing formal boundary analysis.

We make a few remarks on the more recent developments in Dependent Product Partition 

Models (DPPM), which refers to classes of predictor-dependent product partition models. 

These models encourage clustering among subjects with like covariates. Both Müller et al. 

(2011) and Park and Dunson (2010) require a “similarity function” g(x1, … , xk) which 

adjusts the (typically Dirichlet process) cohesion function, giving larger values for sets of 

covariates x1, … , xk that are “similar.” Park and Dunson’s (2010) model development 

proceeds through the consideration of similarity functions that place probability distributions 

on the covariates x1, x2, … , treating them as continuous; specifically, they consider the 

DPM of normals proposed by Müller, Erkanli, and West (1996). Müller, Quintana, and 

Rosner (2011) consider normal models for continuous covariates, and other choices for 

ordinal and nominal categorical predictors. For our model and application, we require a 

cohesion function that gives larger values for proximal counties. That is, our “predictor” is a 

categorical variable with spatial information, quite different from either approaches of the 

DPPM referenced above. We could attempt a similarity function based on, for example, 

average centroid distances within a group, but this is far outside the class of models we are 

proposing. Rather, the models we are proposing incorporate areal spatial information 
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directly into the stick-breaking weights (ARSB) or through a copula-type formulation 

(ARDP).

3.3. Areally-referenced spatial stick-breaking prior

Existing dependent DP models are applicable to continuous covariates. For for areally-

referenced spatial data, the underlying spatial association is built on adjacency or 

neighborhood structures of the regions, hence the covariates related to the spatial locations 

are not continuous everywhere. DDP’s allowing continuous predictor-dependent weights no 

longer apply. Therefore, we propose an areally-referenced stick-breaking (ARSB) prior for 

the spatial random effects that will apply to areal data. We adapt the point-referenced spatial 

stick-breaking approach of Reich and Fuentes (2007) to areal data by incorporating spatial 

dependence in the DP by introducing additional weights that borrow strength across the 

neighbors using CAR priors (Section 2)

The spatial random effects are assigned a stick-breaking prior, whose weight parameters 

pi1 = wi1V1, pik = wikVk∏l = 1
k − 1 (1 − wilV l), i = 1, …, n, k = 1, 2, …, depend not only on the 

Vks, but also on “location” weight parameters wik. These weights lie between (0, 1) so that 

each pik is a valid stick-breaking weight (0 < pik < 1). Since the CAR distribution has 

support over the entire real line, we introduce a transformation logit(wik) = zik and allow the 

ziks to be distributed as CAR. Of course, any other link mapping the unit interval to the real 

line could be used. For each k, we let {zik}
i = 1
n  be distributed as a CAR distribution yielding 

a Markov random field (MRF) on the location weights and allowing the desired smoothing 

across neighbors. Usually larger values of ρ induce greater smoothing and setting ρ = 1, 

which is the maximum legitimate value for ρ (recall the discussion below (2.2)), yields the 

popular ICAR prior. This prior is improper as D – W is singular, but for a map without 

islands this issue can be resolved by imposing the additional constraint ∑i = 1
n zik = 0.

The ARSB model, truncated to m terms for the stick-breaking representation, with a Poisson 

likelihood is

Y i ∣ β, ϕi ∼ Poisson(Eie
μi), μi = xi′β + ϕi; ϕi ∼ G(i); G(i)( ⋅ ) = ∑

k = 1

m
pikδθk

( ⋅ ), θk ∼ N(0, σs
2)

pi1 = wi1V1, pik = wikVk ∏
l = l

k − 1
(1 − wilV l), Vk ∼iid Beta(1, α), {zik} ∼ CAR(ρ, σk

2),

(3.1)

where logit{wik} = zik for k = 1, … , m. Recall that the α parameter stochastically controls 

the number of distinct values among the n observations. The covariance between dependent 

variables Yi and Yj is induced by the covariance of the spatial random effects φi and φj.
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The ARSB model incorporates dependence between the discrete distributions on different 

regions but does not yield identical marginal distributions on the φi. Duan, Guindani and 

Gelfand (2007) introduced random distributions for the spatial effects associated with point-

referenced data allowing different surface selection at different sites while ensuring that the 

marginal distribution of the effect at each sites still comes from a Dirichlet process. Here we 

propose an areal alternative, which we call an areally-referenced Dirichlet process (ARDP). 

The ARDP maintains the marginal distribution of each spatial random effect to be a regular 

univariate DP while incorporating the spatial dependence between these DPs.

Consider spatial random effects φi, i = 1, …, n each arising marginally from an identical 

random measure G, where G ~ DP (α, G0). We introduce spatial dependence between these 

DPs by constructing dependent uniform (0, 1) random variables. Suppose γ1, …, γn are 

jointly distributed as a CAR(ρ, σγ), and F(1)(·), …, F(n)(·) denote the cumulative distribution 

functions of the marginal distributions of each component of the CAR random vector. 

Marginally, each F(i)(γi) is uniform (0, 1) but they will be dependent through γ1, …, γn.

More explicitly, we formulate our hierarchical areally-referenced Dirichlet process (ARDP) 

model as follows. We use a Poisson likelihood for the first stage model, but this could be 

replaced by any discrete distribution in the exponential family. Thus,

Y i ∣ β, ϕi, ∼ Poisson(Eie
μi), μi = xi′β + ϕi; ϕ = {ϕi}i = 1

n ∼ Gn; Gn = ∑
u1, …, un

πu1, …, un
δθu1

…δθun
;

πu1, …, un
= P ∑

k = 1

u1 − 1

pk < F(1)(γ1) < ∑
k = 1

u1
pk, …, ∑

k = 1

un − 1

pk < F(n)(γn) < ∑
k = 1

un
pk ; θk ∼iid N(0, σs

2);

p1 = V1; p j = V j ∏
k < j

(1 − Vk); V j ∼i . i . d . Beta(1, α); γ = {γi}i = 1
n ∼ Nn(0, Σ),

(3.2)

where k = 1, 2, … , K truncates the stick breaking function to K terms, Σ = σγ
2(D − ρW)−1 is 

the covariance matrix of a proper CAR distribution. Using the cumulative distribution 

function of the γi’s to model the weights is an adaptation of the Hybrid Dirichlet Process 

(Petrone et al., 2009), where copulas are used to model weights. The distinction is that we 

model areal dependence using Markov random fields, while the hybrid DP models 

dependence using continuous spatial processes for inference on uncountable sets. Both 

methods ensure that the marginal distribution of G(i)(φi), for each i, follows an identical DP
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G(i)(ϕi) = ∑
k = 1

K
∑

u1, …, ui = k, …, un

πu1, …, ui = k, …, un
δθu1

…δθui = k
…δθun

= ∑
k = 1

K
pkδθk

,

(3.3)

Where pk = ∑k = 1
K P Σt = 1

k − 1pt < F(i)(γi) < Σt = 1
k pt . How the covariance between φi and φj 

depends upon the probabilities p1, …, pK can be seen from

Cov(ϕi, ϕ j) = σs
2 ∑

l = 1

K
P(ui = u j = l)

= σs
2 ∑

l = 1

K
P Σk = 1

l − 1 pk < F(i)(γi) < Σk = 1
l pk, Σk = 1

l − 1 pk < F( j)(γ j) < Σk = 1
l pk

= σs
2 ∑

l = 1

K
plP F(i)−1

(Σk = 1
l − 1 pk) < γi < F(i)−1

(Σk = 1
l pk) ∣ F( j)−1

(Σk = 1
l − 1 pk) < γ j < F( j)−1

(Σk = 1
l pk) ,

(3.4)

where (γi, γj) follows a bivariate normal distribution with covariance specified by the CAR 

model. Posterior inference for the ARSB and ARDP models are based upon Markov chain 

Monte Carlo simulations (e.g., Gelman et al., 2004; Carlin and Louis, 2008). The details are 

outlined in the Supplement.

3.4. A practical FDR-based method to select difference boundaries

We offer a practical strategy to obtain a threshold for detecting difference boundaries. A 

decision-theoretic approach will treat the spatial boundary analysis problem as one of 

multiple hypothesis testing. For each pair of adjacent regions, say i and j, we seek to test φi = 

φj against φi ≠ φj. This produces as many hypothesis as there are edges. Recently, several 

authors have advocated the use of the false discovery rate (FDR) to adjust for multiplicities 

in hypothesis testing problems (see, e.g., Benjamini and Hochberg, 1995; Efron et al, 2001; 

Storey, 2002, 2003). Li et al. (2012) used the FDR on Smoothed Moving Average (SMA) 

models involving some awkward constraints on the random effects for model fitting. Here, 

we adapt this approach to the ARDP and ARSB models, which is free of such constraints.

We will want to identify a boundary (i, j) as a difference boundary if the posterior 

probability that P(φi = φj ∣ Y) exceeds a certain threshold t, where Y = {Y1, Y2, … , Yn} is 

the entire collection of observed outcomes. For each pair of neighboring regions, we 

construct A(i,j)(Y;t) = {Y : P(φi ≠ φj ∣ Y) > t}, a critical region that indicates evidence in 

favor of (i, j) being a difference boundary. The choice of t will be based upon controlling the 

FDR below a level δ = 0.05. If Z(i,j) = I(φi = φj) and v(i,j) = P(Z(i,j) = 0 ∣ Y), then the FDR is
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FDR =
∑i ∼ j Z(i, j)I(v(i, j) > t)

∑i ∼ j I(Z(i, j) > t) where i ∼ j if wi j ≠ 0 .

(3.5)

Estimation of (3.5) is straightforward. It is obtained as the posterior expectation

FDR = E[FDR ∣ Y] =
∑i ∼ j (1 − v(i, j))1(v(i, j) > t)

∑i ∼ j 1(v(i, j) > t) ,

(3.6)

where v(i,j) is computed as a Monte Carlo mean of the posterior samples for Zij. Rejection 

rules can be then constructed to bound the FDR at target level δ: reject if v(i,j) > t, where

t = sup u :
∑i ∼ j I(v(i, j) > u)(1 − v(i, j))

∑i ∼ j I(v(i, j) > u) ≤ δ .

Li et al. (2012) required estimating as many models as there are geographical boundaries 

making it computationally expensive. For example, for testing county boundaries in the state 

of Minnesota, they had to estimate 211 models. More importantly, their method does not 

provide posterior estimates from any single model. Obtaining model-averaged estimates is 

not straightforward. These drawbacks are circumvented with the ARDP and ARSB.

4. A Simulation Study

To evaluate our methods, we conduct a simulation study using the template of a Minnesota 

county map in Li et al. (2011). There are n = 87 counties in Minnesota, and 211 pairs of 

neighboring counties (i.e., geographical boundaries). We simulated 50 datasets on a map of 

Minnesota, where the state was divided into six regions. Each dataset was generated from 

(2.1), where μi was one of five different means corresponding the the five different shades 

mapped on Figure 4.1. The darker shades correspond to higher means. To add some 

irregularity, we also included one county (Sherburne county shaded white in Figure 4.1) that 

has all its boundaries as true difference boundaries. This resulted in “six” different clusters 

on the map and 47 “true difference boundaries” delineating the different clusters, i.e. these 

47 boundaries are county borders that separate two areal units with substantially different 

means.

For this simulation experiment, since we know the true difference boundaries we can obtain 

the sensitivity and specificity for each of our proposed models. Sensitivity is the probability 

of correctly detecting a true difference boundary, while specificity is the probability of 
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correctly labeling a geographical boundary as not a difference boundary. To be precise, for 

every pair of geographical neighbors (i, j), we compute the posterior probability P(φi ≠ φj ∣ 
Y) and choose the top T = 35, 40, 45, 50 and 55 edges with the highest posterior 

probabilities. As there are 47 true difference boundaries, these choices encompass settings 

where we could, theoretically have obtained 100% accuracy (when T = 35, 40, 45) and also 

where we are assured of a few false positives (when T = 50, 55).

The prior specification and computational details of the ARDP model are in the Web 

Supplement. The parameter α can be fixed based upon the expected number of clusters a 
priori. In this case, we have six clusters which would suggest a value of α around 1.25. In 

fact, we experimented with α ranging from 0.25 to 1.75 and obtained very robust inference. 

The results presented here correspond to α = 0.5, which leads to an expected number of 

clusters around 3, which is half of the number of true clusters. We also fixed ρ = 0.98 in the 

ARDP model (ICAR is inapproriate since the covariance matrix must be proper and 

nonsingular). Customarily, higher values of ρ (≈ 1) yield sufficient smoothing, while values 

lower than 0.95 tend not to (e.g., Banerjee et al., 2004). In contrast, for ARSB, we used the 

ICAR model (with ρ = 1) along with the sum-to-zero constraint, which yields legitimate 

posterior samples. We assumed a regression structure with only an intercept (i.e. xi ≡ 1) and 

placed a flat prior on the corresponding β. A weakly informative prior Γ(.01, .01) is 

specified for the precision parameters τs and τγ . In both models, the stick-breaking prior 

was computed using about 15 terms.

We compare the performance of DPM, ARSB, ARDP with three existing methods: (i) the 

deterministic Boundary Likelihood Value (BLV) algorithm of Jacquez and Greiling (2003a, 

2003b) using the BoundarySEER software (see http://www.biomedware.com) with default 

thresholds set from a BLV histogram, (ii) the model-based approach of Lu and Carlin 

(2005), which we call the “LC method”, and (iii) a class of discrete Spatial Moving Average 

(SMA) models outlined in Li et al. (2011). We ran these models within the R statistical 

software environment running 3 parallel chains for each model and dataset. Convergence 

was diagnosed after 12, 000 iterations of burn-in using Gelman-Rubin diagnostics and 

autocorrelation plots from the coda package in R. A subsequent 5, 000 × 3 = 15, 000 

samples were used for posterior inference. On a workstation using a Intel dual core 4 GHz 

processor, each model took less than five hours of CPU time to deliver its entire inferential 

output for all the 50 simulated datasets.

Table 4.1 presents the average detection rates for these different methods applied to the 50 

simulated datasets. The DPM and the BLV methods do not explicitly borrow strength across 

neighbors, while the other four methods in Table 4.1 exploit the adjacency structure of the 

underlying map. There seems to be little to choose between ARDP and ARSB but both 

methods seem to be slightly outperforming the other methods in both sensitivity and 

specificity under all five scenarios. In addition, while the performance of the SMA model is 

perhaps comparable, it is computationally onerous and less robust to prior assumptions (Li et 

al., 2011) than ARDP or ARSB.

The LC method is based upon a parametric CAR model that does not render itself to 

probabilistic boundary analysis (since P(φi = φj) will always be zero). However, one could fit 
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parametric CAR models and use the posterior expectation of the absolute differences of the 

rates, i.e. E(∥ηi – ηj∥ ∣Y), where ηi =
μi
Ei

 acts as a boundary difference score. Higher values 

will indicate spatial barriers between units i and j. The DPM, ARSB and ARDP models not 

only yield estimates of ηi, as in the “LC” method, but they also deliver nonzero posterior 

probabilities P(φi = φj ∣ Y). The LC method cannot produce these posterior probabilities. 

Therefore, we used the posterior expectation metric to compare its performance. The SMA 

model does not deliver posterior estimates of spatial effects from a single model. Hence, we 

exclude it from this comparison.

Table 4.2 presents the results for four of the methods. The deterministic BLV method detects 

89.6% of the boundaries. The promise of our stochastic models is evident from the superior 

performances of the ARDP and the ARSB models. Since we know the true boundaries in 

Figure 4.1, we can assess the performances of these approaches in detecting the true 

boundaries. Using direct posterior estimates 47 difference boundaries. We find that the 

DPM, ARDP and the ARSB models are each able to detect about 90% of the true 

boundaries, which is superior to both LC and BLV. The ARDP model performs slightly 

better than the other two, which are approximately equally good. Using the posterior 

expectation metric, we again find that the proposed ARSB and ARDP models clearly 

outperform the LC method. The ARDP model has almost a 10% better detection rate, while 

the ARSB model excels by approximately 5%. Both ARDP and ARSB outperform the DPM 

model as well in terms of the posterior expectation metric.

5. Analysis of Minnesota P&I Dataset

We apply our method to the Minnesota Pneumonia and Influenza (P&I) diagnosis dataset. P 

& I rank as the eighth leading cause of death in the United States and the sixth leading cause 

in people over 65 years of age with Pneumonia consistently accounting for the 

overwhelming majority of deaths between the two. Together, they cost the U.S. economy in 

2005 an estimated $40.2 billion. Identifying difference boundaries that perform well with 

regard to sensitivity and specificity can help identify so-called “health barriers” more 

accurately and buttress an active surveillance program for an influenza-like illness.

We analyze a dataset consisting of Minnesota residents above 65 years of age who were 

enrolled in the Medicare fee-for-service program as of December 31, 2001. The Medicare 

Denominator file for 2001 was used to define the cohort, which has also been used to study 

the impact of vaccinations on elderly Minnesota residents. The Medicare Provider Analysis 

and Review (MedPAR) manages patient records based on date of discharge and supplied 

information regarding hospitalizations resulting from P&I. Rates of P&I hospitalization are 

traditional measures of the impact of influenza virus in the elderly population. We identify 

the ‘boundaries’ that separate the more affected areas from the less affected areas.

If Yi and Oi are the observed number of hospitalizations and the population in county i 

respectively, then Ei =
∑k = 1

n Yi

∑k = 1
n Oi

Oi is the expected number of cases (under the assumption of 
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no spatial variation in rates), where n is the total number of counties. The choropleth map of 

the raw data is shown in Figure 5.2. The high valued SMR (standard mortality ratio) 

counties are scattered over the map, with a clump on the southwest and some isolated 

regions surrounded by sparsely inhabited counties that also have lower counts.

We employed the same models in Section 4to detect boundaries on the P&I hospitalization 

map. The same prior specification and model settings are applied here as the simulation 

study, except we assign α = 1, a customary choice when one does not seek a prior 

distribution on this parameter (Escobar and West, 1995) or has no a priori information about 

the number of clusters. Three parallel MCMC chains were executed on the same computing 

environment as described in Section 4.Convergence was diagnosed after 10, 000 iterations of 

burn-in using Gelman-Rubin diagnostics and autocorrelation plots and a subsequent 5, 000 × 

3 = 15, 000 samples were used for posterior inference. Each model consumed less than ten 

minutes of CPU time to produce its entire inferential output for the Minnesota Pneumonia 

and Influenza dataset with very little difference between the ARSB, ARDP and the (non-

spatial) DPM model.

Health administrators may prefer to use a “top bracket” of most likely difference boundaries 

for policy formulation. The top 50 difference boundaries detected by each model are 

highlighted in Figure 5.3. Table 5.3 presents a comprehensive “lookup table” containing the 

names of adjacent counties that have been ranked in decreasing order according to 1 – P(φi = 

φj ∣ Data) from the ARDP model. Instead of selecting this “bracket” arbitrarily, statisticians 

may prefer a threshold obtained by controlling the FDR. Setting δ = 5% yields Numbers 

1-33 as difference boundaries, while setting δ = 10% detects Numbers 1-42 as difference 

boundaries. This table offers an easy reference for health administrators and officials to 

identify the more substantial spatial health barriers in the state.

About 90% of the boundaries listed in Table 5.3 are detected by all four models. As a 

specific example consider Cook and Koochiching county. The outcome variable in the 

former is substantially higher than its only neighbor, Lake, while Koochiching county is 

separated from all its neighbors due to its extremely high P&I SMR, even after being 

smoothed by the model. Among the 50 difference boundaries detected by the ARDP model, 

47 are also detected by the ARSB model. The three county-pairs that went undetected by 

ARSB were: Goodhue and Olmsted, Freeborn and Steele, and Big Stone and Traverse. 

Instead, the ARSB model detected boundaries between counties Becker and Wadena, Cotton 

Wood and Jackson, and Cook and Lake.

The map in Figure 5.2 does not display clustering as pronounced in the simulation example. 

Furthermore, unlike in the simulation example, we do not know the “truth.” It does, 

however, reflect well on our models that the rankings in Table 5.3 are very consistent with 

competing methods. We already discussed the minor differences between the ARDP and the 

ARSB. The agreement between the ARDP and the SMA in terms of identifying the 

difference boundaries using FDR-based thresholds is very strong with over 95% agreement 

in boundary selection.
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6. Conclusion and Future Work

The paper presented a class of nonparametric Bayesian hierarchical models for detecting 

difference boundaries on maps. An advantage of the new approach is that it permits the 

probabilistic estimation of an edge as a difference boundary, and improves the percentage of 

true detection. A disadvantage is that the model cannot be easily fit into any existing 

commercial software. We fit these models in R (www.r-project.org), and we wish to collect 

these models in an R package in the near future.

The ARDP and ARSB models in conjunction with the FDR controlled threshold selection 

provide a major improvement over earlier work by Li et al. (2012) by circumventing the 

need to estimate as many models as there are geographical boundaries and by offering 

comprehensive model-based posterior estimates of model parameters. The latter is precluded 

in Li et al. (2012) who treat this as a purely hypothesis testing problem. However, issues 

related to optimal selection of boundaries warrants further investigation especially regarding 

the sensitivity of the inference to FDR-based cutoffs and to prior specifications. Further 

extensions can be formulated by incorporating classes of loss functions, as discussed by 

Müller et al. (2008), for a more comprehensive decision-theoretic framework. Such 

developments may, in turn, lead to more definitive conclusions regarding the performance of 

these models in maps that display weaker clustering patterns.

Finally, we note that both the ARDP and ARSB models render themselves to multivariate 

extensions, where multiple health outcomes need to be modeled jointly. Analogous to the 

univariate ARSB model, we can construct a multivariate areally referenced stick breaking 

(MARSB) model such that the sticking breaking weights p are correlated through another 

type of “weight” parameter that scales the Vi’s. We place a multivariate CAR (MCAR) prior 

on these “weight” parameters so as to capture both spatial correlation and inter-variable 

correlation (Jin et al., 2005, 2007). For the ARDP, the distribution of the spatial random 

effects can be modeled by constructing multivariate areally referenced Dirichlet processes 

(MARDP). These pursuits will constitute natural extensions of our current work.
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Figure 4.1: 
A map of the simulated data with the grey-scales showing the six different clusters, each 

having its own mean. There are 47 boundary segments that separate regions with different 

means(shades). The percentages reflect the quantiles for the distribution of the outcomes.
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Figure 5.2: 
Choropleth map of the SMR in MN (P&I) dataset. The percentages reflect the quantiles for 

the distribution of the SMR.
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Figure 5.3: 
Difference boundaries detected by various models in the Minnesota (P&I) dataset.
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Table 4.1:

Sensitivity and specificity in the simulation study (50 datasets generated on a Minnesota map) for the ARDP, 

ARSB, DPM, LC and BLV methods.

T Method Sensitivity Specificity T Method Sensitivity Specificity

35 ARDP 0.768 0.998 40 ARDP 0.822 0.990

ARSB 0.771 0.991 ARSB 0.821 0.989

DPM 0.737 0.989 DPM 0.791 0.991

BLV 0.711 0.990 BLV 0.778 0.979

LC 0.702 0.989 LC 0.767 0.976

SMA 0.740 0.998 SMA 0.818 0.991

45 ARDP 0.881 0.971 50 ARDP 0.927 0.962

ARSB 0.878 0.972 ARSB 0.930 0.968

DPM 0.870 0.968 DPM 0.897 0.952

BLV 0.831 0.964 BLV 0.869 0.944

LC 0.813 0.959 LC 0.859 0.941

SMA 0.872 0.975 SMA 0.901 0.955

55 ARDP 0.940 0.943

ARSB 0.941 0.940

DPM 0.895 0.915

BLV 0.891 0.920

LC 0.881 0.917

SMA 0.925 0.930
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Table 4.2:

Assessment of the true wombling boundaries with those produced by LC, ARDP and ARSB based on P(φi = φj 

∣ Y) and E(∥ηi – ηj∥ ∣Y) in the simulation study.

Assessment using P(φi = φj ∣ Y) Assessment using E(∥ηi – ηj∥ ∣Y)

LC - 78.7%

DPM 89.3% 82.2%

ARDP 91.4% 88.3%

ARSB 89.1% 83.3%
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Table 5.3:

Names of adjacent counties that have significant boundary effects from the ARDP model. The numbers in the 

first column are the ranks according to P(φi = φj ∣ Y)

1 Beltrami , Koochiching 26 Koochiching, Lake of the Woods

2 Cass, Wadena 27 Isanti, Mille Lacs

3 Douglas , Pope 28 Chippewa, Renville

4 Freeborn , Steele 29 Murray, Pipestone

5 Goodhue , Olmsted 30 Becker ,Mahnomen

6 Itasca , Koochiching 31 Rice , Waseca

7 Kandiyohi, Pope 32 Blue Earth, Brown

8 Koochiching, St. Louis 33 Dodge, Olmsted

9 Pope, Stearns 34 Chisago , Isanti

10 Anoka , Isanti 35 Redwood , Yellow Medicine

11 Dakota, Goodhue 36 Pennington, Polk

12 Lincoln, Pipestone 37 Goodhue, Wabasha

13 Murray, Redwood 38 Pope, Swift

14 Steele, Waseca 39 Morrison, Todd

15 Renville, Yellow Medicine 40 Fillmore, Olmsted

16 Cottonwood, Murray 41 Cook , Lake

17 Jackson , Martin 42 Douglas, Grant

18 Kandiyohi, Swift 43 Mahnomen,Norman

19 Pope, Stevens 44 Grant, Wilkin

20 Todd, Wadena 45 Mahnomen, Polk

21 Lyon, Redwood 46 Jackson, Nobles

22 Murray, Nobles 47 Morrison, Todd

23 Isanti, Sherburne 48 Dodge , Olmsted

24 Otter Tail , Todd 49 Big Stone , Traverse

25 Clay, Otter Tail 50 Morrison, Stearns
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